A tree hollow dynamics simulation model

نویسندگان

  • I. R. Ball
  • D. B. Lindenmayer
  • H. P. Possingham
چکیده

This paper describes a deterministic computer model for simulating forest dynamics. The model predicts the long-term dynamics of hollow-bearing trees which occur in a single-species (monotypic) forest stand under an array of different timber harvesting regimes over a time scale of centuries. It is applied to a number of different timber harvesting scenarios in the mountain ash (Eucalyptus regnans F. Muell.) forests of Victoria, south-eastern Australia. Computer experiments give results that have far-reaching implications for forest management and could not have easily been predicted without a model. These include: (1) when the harvest rotation time is 100 years or less, a supply of trees with hollows cannot be ensured by only retaining trees which already have hollows: and (2) when some retained trees are lost through logging-related mortality, the effect on the number of trees with hollows is exaggerated. For instance, if half of the retained trees are lost via logging-related mortality, it is not suf®cient to double the number of trees retained in order to maintain the same number of hollow-bearing trees. HOLSIM is a planning tool for forest and wildlife managers. it will assist them in forecasting long-term stand conditions that result from particular forest management regimes. The ability to make predictions over several harvesting cycles is extremely important for examining the effects of harvesting strategies on the dynamics and structure of forest ecosystems, determining if given management strategies will meet particular targets, anticipating the impacts of forestry operations on hollow-dependent fauna, and helping to better integrate biodiversity conservation within wood production forests. # 1999 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Simulation of CO2 Absorption Enhancement in Hollow-Fiber Membrane Contactors using CNT–Water-Based Nanofluids

Absorption of CO2 from a gas mixture containing CO2 and nitrogen by water-based CNT nanofluids in gas–liquid hollow fiber membrane contactor was modeled and solved using COMSOL Multiphysics 5.4. The model assumed partial wetting of the membrane, along with diffusion in the axial and radial directions. In addition, Brownian motion and grazing effects were both considered in the model. The main c...

متن کامل

Mathematical Modeling and Numerical Simulation of CO2 Removal by Using Hollow Fiber Membrane Contactors

Abstract In this study, a mathematical model is proposed for CO2 separation from N2/CO2 mixtureusing a hollow fiber membrane contactor by various absorbents. The contactor assumed as non-wetted membrane; radial and axial diffusions were also considered in the model development. The governing equations of the model are solved via the finite...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

CO2 Capture by Dual Hollow Fiber Membrane Systems

In this paper, a system for efficient removal of carbon dioxide by hollow fiber membranes is proposed. The system is compact, and it is very useful for application in the offshore energy industries. In particular, it is used to removing CO2 from the exhaust of power generation facilities on offshore platforms.The proposed dual membrane contactor contains two types of membranes (polypropylene me...

متن کامل

Size Dependent Properties of Hollow Gold Nanoparticles: A Theoretical Investigation

A new kind of nanostructures with the negative curvature defined as the hollow ones have recently used in biomedical applications. In this work, an analytic model was developed to compute the size-dependent properties of spherical hollow gold nanoparticles in shell-core-shell configuration. This model has established to calculate the cohesive energies based on the surface energy consideration d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999